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Abstract

A simple method is used to quantify the performance of non-reflecting boundary conditions for duct
acoustic applications. The method uses a two-dimensional wavesplitting technique to decompose the
linearized Euler equations into its constitutive modes, allowing the magnitude of reflected waves from
outflow boundaries to be accurately determined. Realistic conditions are simulated by conducting the
boundary condition analysis using acoustic waves with characteristics often found in duct and
turbomachinery problems. For this paper, the method is used to investigate the performance of three
different buffer zone implementations and the Perfectly Matched Layer as non-reflecting boundary
conditions. The effect of the damping properties of these boundary conditions and the incident acoustic
wave characteristics on performance are considered. Results indicate that the buffer zone boundary
condition using explicit damping of the solution vector after each timestep produces the best non-reflecting
performance. A deterioration in performance was observed for incident waves at high angles relative to the
boundary normal for all implementations.
r 2004 Published by Elsevier Ltd.

1. Introduction

Computational Aeroacoustics (CAA) is the numerical simulation of noise generation and
propagation within aerodynamic flows. A major application of CAA has been towards the
prediction of noise generated by aircraft components and the corresponding sound level observed
in the far field. Noise generation is governed by the Navier–Stokes equations, however, the
solution of the Navier–Stokes equations over large domains to determine farfield noise is not
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computationally feasible. This may be overcome by the separation of the noise generation and
noise propagation processes, with noise propagation being determined by the linearized Euler
equations (LEE) which are computationally less intensive than the Navier–Stokes equations. Even
so, very large computational domains are still prohibitive, requiring them to be truncated by the
introduction of artificial boundaries. Numerical non-reflecting boundary conditions are required
at such boundaries to ensure that out-going disturbances are not reflected. With the development
of high order discretization schemes for the accurate prediction of noise propagation, it is often
spurious reflections from the artificial boundaries that are the greatest source of numerical error in
CAA simulations.
In many cases, these reflections can be reduced by manipulation of the domain boundary, such

that the outgoing wave angle relative to the boundary is small, giving more favourable reflection
properties. However, in duct acoustic problems, this is not possible as the position and geometry of
the domain boundary is governed by the shape of the duct. The performance of five non-reflecting
boundary conditions in duct acoustic applications is investigated by using a wavesplitting technique
developed by Wilson [1], to accurately measure wave reflection from domain boundaries.
A variety of non-reflecting boundary conditions have been developed that reduce spurious

reflections at the edges of truncated computational grids. Three of the main types of non-reflecting
boundary conditions are characteristic methods, farfield asymptotic solutions and buffer zone
techniques. The application of a characteristic analysis of the Euler equations to formulate non-
reflecting boundary conditions has been presented by Thompson [2,3], Poinsot and Lele [4] and Giles
[5]. The boundary condition is formulated by conducting a one-dimensional characteristic analysis of
the Euler equations. From the analysis the boundary equations can be written in characteristic form.
A non-reflecting boundary condition is created by assigning the value of the characteristic that
represents waves entering at the boundary. Characteristic non-reflecting boundary conditions have
been used for a number of CAA simulations [6,7]. Due to the one-dimensional formulation, they
perform best when the out-going wave is normal to the grid boundary.
Farfield asymptotic boundary conditions are based upon the asymptotic solution of the

governing equations at the farfield boundary [8,9]. Such boundary conditions have been shown to
be accurate for some simulations. However, the difficulty in obtaining asymptotic solutions for
complex flows means that their scope is limited.
The buffer zone technique is a group of boundary conditions based upon damping methods.

For buffer zone techniques the computational grid is extended to create an extra domain (or zone)
in which the solution is damped by an application of low-pass filters, grid stretching or numerical
damping [10–13]. Another method is to accelerate the flow to supersonic speeds at the end of
the buffer zone, eliminating the need for a non-reflecting boundary condition [14]. Buffer zone
boundary conditions are easy to implement, but the inclusion of artificial damping within the
buffer zone means that the solution is not physical. The addition of extra grid points in the buffer
zones adds to the computational cost. The performance of the buffer technique based upon
numerical damping methods will be the main aim of investigation in this paper.
A more involved formulation of the numerical damping technique is the Perfectly Matched

Layer (PML) [15]. Again extra damping regions are added around the computational domains in
which out-going waves are damped. The formulation of the equations solved in the PML means
that, in theory, the outgoing waves will not create any reflection when entering a PML domain,
for any frequency or wave angle. The first PML boundary condition for the Euler equations was
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proposed by Hu [16] and used a split formulation of the Euler equations. A second application of
the PML technique to the Euler equations was given by Arbabanel et al. [17]. For both
formulations, exponentially growing solutions at the PML=computation domain boundary were
observed under certain flow conditions, requiring the inclusion of numerical filtering and artificial
damping in order to maintain stable solutions. Recently, Hu [18,19] presented an unsplit stable
PML formulation that does not support exponentially growing solutions.
Of the non-reflecting boundary conditions currently used, buffer zone techniques and the PML

have been shown to perform well for many test case problems. The simplicity of buffer zone
techniques and their applicability to linear and non-linear Euler equations means they hold
potential as a general non-reflecting boundary condition for CAA. The damping methods used in
buffer zone boundary conditions also form the basis of the numerical implementation of the
PML, so an analysis of the buffer zone method will also gain insight into issues relating to the
PML method. To date, however, little work has been done to analyse the performance of
the different buffer zone techniques and the PML when applied to realistic problems. In this
paper, the performance of three different implementations of the buffer zone technique
is quantified based upon numerical damping and the PML and the factors affecting their
performance are investigated. The analysis is conducted using the linearized Euler equations and
the results compared to the performance of Thompson’s characteristic boundary condition [3].
A simple method is used to determine the performance of non-reflecting boundary conditions

for typical acoustic waves found in duct and turbomachinery noise propagation problems.

2. Governing equations

2.1. Linearized Euler equations

In the following analysis the Linearized Euler equations in a Cartesian co-ordinate system are
considered. The equations are linearized about a steady, uniform mean flow in the x-direction. In
non-conservative vector form the equations are given by

@U

@t
þ ½A�

@U

@x
þ ½B�

@U

@y
¼ 0; ð1Þ

where ½U� is the vector of primitive solution variables

½U� ¼

r0

u0

v0

p0

2
6664

3
7775;

½A� ¼

U0 1 0 0

0 U0 0 1

0 0 U0 0

0 1 0 U0

2
6664

3
7775; ½B� ¼

0 0 1 0

0 0 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775:
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Here, r is the density, u; v the velocities, p the pressure and U0 the mean velocity in the x-direction.
An apostrophe denotes a fluctuating variable. In Eq. (1), the density is non-dimensionalized by
the mean density, r0; all velocity variables by the speed of sound, c; and pressure by r0c

2:

2.2. Boundary conditions

2.2.1. Buffer zone boundary condition
To create a buffer zone boundary condition based upon numerical damping, an extra zone is

adjoined on to the edge of the computational domain where the boundary condition is to be
applied, see Fig. 1. Within this extra zone, the amplitude of the out-going wave is damped to a set
target value by a damping function, sðxÞ: Damping the out-going waves to a target value means
that the amplitude of the waves at the outer edge of the buffer zone is constant. Setting a constant
amplitude is the non-reflecting criterion upon which buffer zone boundary conditions based upon
numerical damping work. The damping function is set to zero at the interface between the
computational domain and the buffer zone to allow out-going waves to smoothly enter the buffer
zone. Full damping is applied at the outer edge of the buffer zone to damp the target solution. In
between, the damping function is varied smoothly to minimize possible reflections.
The performance is investigated of the three main implementations of the buffer zone boundary

condition based upon numerical damping.
Type I: The solution vector is explicitly damped after each timestep [10].

Unþ1 ¼ Unþ1 � sðUnþ1 �UtargetÞ; ð2Þ

where Unþ1 is the solution vector computed after each time step. The damping coefficient, s; varies
smoothly according to the function

sðxÞ ¼ smax 1�
x � L

L

����
����
b

; ð3Þ

where L is the width of the buffer zone, x is the distance from the inner boundary of the buffer
zone and smax and b are set coefficients which determine the shape of the damping function. For
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the LEE the intention is to damp the out-going waves in the buffer zone to the mean flow, hence
the target solution Utarget is set as zero.

Type II: Implicit damping where the damping term is included in the governing equations [11].
With this added damping term, equations to be solved in the buffer zone become

@U

@t
þ ½A�

@U

@x
þ ½B�

@U

@y
þ sðxÞU ¼ 0: ð4Þ

Type III: Implicit damping with artificial added convection. This method proposed by Freund
[12] adds an additional convection term to the governing equations along with the artificial
damping. The added convection only takes effect in the buffer zone region. This causes the wave
to accelerate towards the outer buffer zone edge. Any reflected waves are slowed by this opposing
convection and subjected to more damping than experienced without the additional convection
term. The aim being to further reduce the amplitude of any reflected wave before it enters the
computational domain. The function for the added convection term is similar to the damping
term function

UcðxÞ ¼ Uc;max 1�
x � L

L

����
����
g

; ð5Þ

where UcðxÞ is the added non-dimensional convective velocity and Uc;maxðxÞ the maximum
convective velocity realized at the outer edge of the buffer zone. g is a shaping parameter similar to
b in Eq. (3). The equations solved in the buffer region for Type III buffer boundary now become

@U

@t
þ UcðxÞ

@U

@x
þ ½A�

@U

@x
þ ½B�

@U

@y
þ sðxÞU ¼ 0: ð6Þ

2.2.2. PML boundary condition

The PML boundary condition implemented is the unsplit formulation by Hu [18,19]. For the
computational set-up used in the analysis, the boundary condition is implemented in a vertical
x-layer only. For which, the PML boundary condition formulation is

@U

@t
þ ½A�

@U

@x
þ ½B�

@U

@y
þ sðxÞ½B�

@q

@y
þ sðxÞ Uþ

U0

1� U2
0

½A�U
� 	

¼ 0; ð7Þ

where q is an auxiliary variable defined as

@q

@t
¼ U: ð8Þ

2.2.3. Characteristic boundary condition
The performance of the three buffer zone and PML boundary conditions are compared

with Thompson’s characteristic boundary condition [2,3]. The central concept of Thompson’s
method is that the Euler equations are hyperbolic in nature and can be decomposed into
wave modes of definite velocity, from which specific boundary conditions for the modes can be
set. Thompson formulated the boundary condition for the non-linear Euler equations, but
the derivation for the LEE is analogous. To construct the characteristic boundary condition
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for the x-direction, Eq. (1) is rearranged so that the y-derivative terms are considered as a source
term:

@U

@t
þ ½A�

@U

@x
¼ ½S�; ½S� ¼ ½B�

@U

@y
: ð9Þ

Eq. (9) is then decomposed into its one-dimensional characteristics

L1 ¼ ðU0 � 1Þ
@p0

@x
�

@u0

@x


 �
;

L2 ¼ U0
@r0

@x
�

@p0

@x


 �
;

L3 ¼ U0
@v0

@x
;

L4 ¼ ðU0 þ 1Þ
@p0

@x
�

@u0

@x


 �
: ð10Þ

The characteristics given in Eq. (10) represent, respectively, the left-travelling acoustic wave, the
entropy wave, the vorticity wave and the right-travelling acoustic waves supported by the LEE.
The direction of travel of the characteristic determines if it is propagating into or out of the
domain. The characteristics that are propagating out of the domain are computed from
the solution within the domain and are left unchanged. For a non-reflecting boundary condition,
the characteristics of the waves propagating into the domain are set to zero. The equations to be
solved at the x-direction boundary are

@U

@t
þ dþ ½B�

@U

@y
¼ 0: ð11Þ

The vector d is defined as (see Ref. [3])

d ¼

1
2
½L2 þ 1

2
ðL5 þ L1Þ�

1
2
ðL5 � L1Þ

L3

1
2c
ðL5 þ L1Þ

2
6664

3
7775: ð12Þ

3. Boundary condition analysis

3.1. Computational set-up

The boundary condition analysis is conducted on the three block Cartesian grid, shown in
Fig. 2. Block 1 is the inflow boundary where a downstream travelling two-dimensional plane wave
is admitted. A type I buffer zone is used as the inflow condition where Utarget is set to the value of
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the incoming wave. Block 2 is the LEE domain representing the physical domain. Block 3 is the
outflow boundary where the non-reflecting boundary conditions are placed. A periodic boundary
condition is set for the y-direction boundaries. The size of block 1 is fixed at 20 grid points in the
x-direction and 40 in the y-direction. The LEE domain fixed at 80	 40 grid points. Block 3 is
varied in size during the analysis. For the analysis of Thompson’s boundary condition, block 3 is
removed and the outflow boundary is set at the downstream edge of block 2 and computed using
Eq. (11). The LEE code used for the analysis uses a sixth order prefactored compact spatial
discretization scheme [20] and fourth order Runge–Kutta temporal scheme [21]. The code has low
dispersion and dissipation characteristics and computes the two-dimensional waves propagated
during the analysis with little error, as shown in Fig. 3.
A wavesplitting technique [1] is used to decompose the LEE solution into its vorticity and

upstream and downstream propagating acoustic modes. The analysis is conducted at a point just
upstream of the outflow boundary condition. At the analysis point the magnitude is computed of
the upstream acoustic mode is computed which is assumed to be the reflected wave from the
outflow boundary. This allows the magnitude of any reflections to be accurately measured.
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3.2. Input wave

The use of transient pressure waves to determine boundary condition performance
is a relatively simple test case for which many boundary conditions perform well. The
boundary condition performance for more relevant acoustic wave forms is investigated.
A two-dimensional plane wave with varying cut-on ratio is used. This allows many features
of duct and turbomachinery noise propagation problems to be simulated. At the inflow a
sinusoidal pressure wave moving towards the positive y-direction is prescribed: in complex
notation

p0 ¼ 89eiðot�kxx�kyyÞ: ð13Þ

The peak-to-mean pressure variation of 89 Pa represents a sound pressure level of 130 dB:
The ratio of the x-wavenumber ðkxÞ to y-wavenumber ðkyÞ can be defined in terms of the cut-on
ratio, x; as

kx

ky

¼
�U0xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q : ð14Þ

The corresponding angular frequency, o; is

o ¼ xky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q
: ð15Þ

Varying the cut-on ratio allows the wave frequency and wave angle of the input wave to be varied.
Here, the wave angle is defined as the angle made between the wavefront normal and the outward
normal of the boundary condition edge.

3.3. Two-dimensional wavesplitting

The LEE support entropy, vorticity and acoustic wave modes. Wavesplitting allows the
LEE equations to be decomposed into these constitutive modes. Wilson’s [1] wavesplitting
method applied to two-dimensional plane waves is presented. The analysis begins with the LEE
in primitive form, given by Eq. (1). To simplify the analysis, the flow is assumed to be isentropic,
i.e., p=rg ¼ constant: This allows the LEE to be reduced to the following form:

@U1

@t
þ ½A1�

@U1

@x
þ ½B1�

@U1

@y
¼ 0; ð16Þ

U1 ¼

u0

v0

p0

2
64

3
75;

½A1� ¼

U0 0 1

0 U0 0

1 0 U0

2
64

3
75; ½B1� ¼

0 0 0

0 0 1

0 1 0

2
64

3
75:
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Next, the @=@x terms are collected on the left hand side and the Fourier transform of the
remaining terms on the right hand side in time and y-direction performed. This gives

U0 0 1

0 U0 0

1 0 U0

2
64

3
75@U1

@x
¼

�io 0 0

0 �io iky

0 iky �io

2
64

3
75U1: ð17Þ

This equation is in the form

½A1� ¼
@U1

@x
¼ ½B1�U1 ð18Þ

or

@U1

@x
¼ ½A1��1½B1�U1: ð19Þ

The eigenvalues of ½A1��1½B1� are, in order of magnitude

l1 ¼
�U0o�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � k2

yð1� U2
0 Þ

q
ð1� U2

0 Þ
;

l2 ¼
o
U0

;

l3 ¼
�U0oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � k2

yð1� U2
0 Þ

q
ð1� U2

0 Þ
; ð20Þ

l1 and l3 represent the downstream and upstream travelling acoustic waves, respectively. l2
represents the vorticity. The inverse of the corresponding eigenvector matrix gives the coefficients
for the LEE modes.

½E�1� ¼ ðe1 e2 e3Þ
�1 ¼

o
ð1� U2

0 Þðlx � lxÞ
U2

0Ky

ð1� U2
0 Þðlx � lxÞ

1

2

k2
yU2

0

o2 þ k2
yU2

0

�
okyU0

o2 þ k2
yU2

0

k2
yU2

0

o2 þ k2
yU2

0

�
o

ð1� U2
0 Þðlx � lxÞ

�
U2

0Ky

ð1� U2
0 Þðlx � lxÞ

1

2

2
6666666664

3
7777777775
: ð21Þ
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In terms of the definitions in Eqs. (14) and (15), the coefficient matrix is

½E��1 ¼

x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p U0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q 1

2

�
xU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q
x2ð1� U2

0 Þ þ U2
0

�
x2ð1� U2

0 Þ

x2ð1� U2
0 Þ þ U2

0

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q
x2ð1� U2

0 Þ þ U2
0

�
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p �
U0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q 1

2

2
666666666664

3
777777777775

: ð22Þ

The non-dimensional value for the upstream and downstream travelling acoustic wave and the
vorticity wave in Fourier space is then given by

½pus
o;ky

Vvort
o;ky

pds
o;ky

�T ¼ ½E��1½uo;ky
vo;ky

po;ky
�T: ð23Þ

Hence

p
us=ds
o;ky

¼
1

2
po;ky

7
xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p uo;ky

7
U0ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� U2
0

q vo;ky

0
B@

1
CA: ð24Þ

From Eq. (24) the magnitude of the reflected (upstream) pressure wave can be computed. A
typical example of the form of the upstream (reflected) wave is shown in Fig. 4 which is a contour
plot showing the error in the computed and analytic solution produced by type II buffer zone for
a wave with a cut-on ratio of 1.5. The large error in the outflow buffer zone confirms that
solutions in such zones are not physical. The reflected wave is damped at the inflow boundary due
to the use of a buffer zone as an inflow boundary condition also.

4. Results and discussion

The performance of non-reflecting boundary conditions can depend on a number of different
factors: the cut-on ratio, frequency=wavelength and wave angle of the out-going wave, mean flow
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velocity and in the case of buffer zone boundary conditions, the damping rate and buffer zone
length. We investigate the effect of these parameters on the performance of the PML and the three
different types of buffer zone implementations mentioned in Section 2.2.1. To investigate the
effect of the wave cut-on ratio and wave angle on buffer zone performance, the cut-on ratio of the
input wave was varied and the reflected wave for a fixed buffer length of 20 grid points measured.
The values of smax and b were fixed at 1.0 and 3.0, respectively. For type III buffer, the values of
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Uc;max and g were fixed at 1.15 and 2, respectively. The difference in the values for b and g causes a
greater proportion of the artificial convection to occur ahead of the damping, increasing the time
spent by any reflected waves in the damping region. Fig. 5 shows the percentage of the 89 Pa
incident wave reflected by the three different buffer implementations and Thompson’s boundary
condition for varying values of cut-on ratio, x; with no background mean flow. The change in cut-
on ratio varies the wave angle with respect to the boundary normal according to Eq. (14). The
corresponding results for wave angle are shown in Fig. 6. As can be seen, for all five boundary
conditions a reduction in the cut-on ratio, or correspondingly, an increase in the incident wave
angle causes an exponential increase in the magnitude of the reflected wave. Type I buffer zone
performs the best, but still produces large reflections at high wave angles. The Thompson
boundary condition performs similarly to the PML, types II and III buffer zones at this buffer
length. The improved performance for type I buffer zone may be explained in part by the effect of
the different damping types on the wave within the buffer zones. Fig. 7 shows the effect of
damping of the different buffer zone type on the wave within the outflow buffer zone. The
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damping for type I buffer zone is applied to the solution vector and not the rate of change of the
solution vector. This forces the waves to fold up, causing the wave angle to reduce. Type II
boundary applies damping to the rate of change of the solution vector and the wave angle remains
unaltered. The artificial convection included in the Type III implementation causes the wave angle
to increase. This effective increase in the wave angle may offset any potential reduction in
reflection caused by the artificial convection as intended. Fig. 7 also shows that the effect of
damping of type II buffer zone and the PML is very similar. Examining Eqs. (4) and (7) shows
that for this test case set-up, the PML condition is different to type II buffer zone condition only
in the introduction of the auxiliary variable q and the mean flow modification of the damping on
the solution vector U: The similarity of the damping shown in Fig. 7 suggests that the damping
term involving the solution vector is dominant, with the auxiliary variable damping term having
only a small effect. This results in the similar performance of the PML and type II buffer, shown
in Figs. 5 and 6.
With the introduction of a background mean flow, the performance of the three buffer zone

implementations and the PML are analyzed under more realistic conditions. Two test cases are
conducted with the introduction a background mean flow of U0 ¼ 0:4; U0 ¼ �0:4; simulating an
outflow and inflow boundary, respectively. The buffer zone length is again fixed at 20 grid points
and the same parameters for the damping and artificial convection maintained from the previous
fixed buffer test case. Results for the U0 ¼ 0:4 case are shown in Fig. 8. The effect of this positive
mean flow is to increase the wave angle and decrease the wave frequency for a set cut-on ratio.
The figures show a similar trend to the no mean flow case, with a reduction in performance with
reduced cut-on ratio and higher incident wave angle. Results for the U0 ¼ �0:4 case, simulating
an inflow condition, are shown in Fig. 9. Again, type I buffer zone, using explicit damping gives
the best performance over the range of cut-on ratios simulated.
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To investigate the effect of buffer length on buffer zone performance, we vary the outflow
buffer zone length to match the change in wavelength in the x-direction as the cut-on ratio is
varied. The parameters for the damping and artificial convection are kept the same as those
used in the previous fixed buffer length analysis. The results of the no mean flow case are shown in
Fig. 10 and comparison with Fig. 6 clearly shows that tuning the buffer length gives a marked
improvement in performance, particularly for type I buffer zone. For a wave angle of 72� only a 4
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percent reflection was observed. The corresponding buffer zone length used for the different wave
angles is also shown. In order to reduce the reflection for type I buffer zone with a 72� incident
wave to 4 percent however, the buffer length had to be extended to 125 grid points; longer than
the LEE domain itself. Reducing the cut-on ratio also causes the x-wavenumber, kx; to increase.
Hence, the results shown in Fig. 10 represent the effect of wave angle and x-wavelength of the out-
going wave on the buffer zone performance. We can separate these effects by analyzing the
performance for a fixed wave angle but varying x-wavelength. This is simply achieved by varying
the length of the domain in the y-direction. To maintain the periodic boundary condition the
value for the y-wavelength must change also. Keeping the cut-on ratio constant causes the
x-wavelength to change according to Eq. (14). Fig. 11 shows the variation in the performance of
type I buffer zone with x-wavelength for a fixed wave angle of 45� and fixed buffer length of 20
grid points. The figure shows that an increasing x-wavelength of the out-going wave also causes
an increase in reflection. Hence, both the wave angle and wavelength component in the direction
of damping are important out-going wave characteristics affecting buffer zone performance.
The effect of the mean flow velocity and damping rate may be analyzed together. Too little

damping causes the out-going wave to reach the outer buffer zone edge causing large reflections or
even unstable solutions in some cases. Too much damping causes the effect of the damping to
become so advanced that the out-going wave is fully damped near the interface between the
computational domain and the buffer zone and the majority of the buffer zone length is not
utilized. For the damping function given by Eq. (3), the effect of varying the value of b is shown in
Fig. 12. The amount of damping is related to the area under the damping curve, the greater the
value of b; the less damping applied. Fig. 13 shows the performance of type I buffer zone with
varying mean flow velocity (non-dimensionalized by the speed of sound) and damping rate. The
buffer zone is fixed at 20 grid points and the cut-on ratio fixed at 2. Eq. (14) shows that for a fixed
value of x; an increase in the Mach number increases the wave angle which is a main cause of
increased reflected wave amplitude. This accounts for the increase in reflection with U0 at fixed
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values of b: Fig. 13 shows that for a given value of U0 there is an optimum value for b: An
increased mean flow means that the speed at which waves enter the buffer zone is greater, this
requires a greater amount of damping, signified by a reduced value of b: However, up to Mach
numbers of 0.8, the change in b required is relatively small and values of between 2 and 2.5 will
ensure a damping rate near the optimum over the range of Mach numbers.
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The results of the buffer zone analysis showed that type I buffer zone, which explicitly damped
the solution vector after each timestep, performed the best. This is remarkable as the explicit
damping causes the waves to fold up within the buffer zone, giving an erratic solution within the
buffer zone compared to the smooth damping created by types II and III buffer zone and PML
(see Fig. 14). The results also showed that types II and III buffer zones gave similar performance
for the fixed buffer length test cases. But for larger buffer zone lengths, type III buffer zone gave
noticeably improved results compared to type II buffer zone. The only difference between these
two implementations is the artificial convection added in type III buffer zone. Hence, the inclusion
of the artificial convection can have a positive effect in reducing the reflected wave and more
investigation into the effect of the convective term than studied in this paper may give further
improvements in performance. However, the artificial convection is most effective when the
majority of the convection takes place before the damping and not simultaneously. This requires
the separation of the buffer zone into a convective and damping region, which in order to generate
the required amount of damping, requires larger buffer zones. Hence, even though further
improvement may be possible it is expected that, for a given buffer length, the performance of
type I buffer zone implementation cannot be matched.
The main factors affecting the buffer zone performance are the damping rate and the

wavelength, wave angle and frequency of the out-going wave. The damping rate depends upon
the shape of the damping function and the mean flow velocity in the direction of the damping—
the greater the mean flow velocity the greater the amount of damping required. For the different
mean flows tested, different optimum values of damping rate (controlled by the parameter b) were
found. However, up to a mean flow of Mach number 0.8, the variation in the value of b for the
optimum value was small and a value of between 2 and 2.5 for b has been confirmed as being most
suitable for subsonic mean flows. Wave angle has the greatest affect on buffer zone performance.
For angles up to 30�; type I buffer zone with a fixed buffer length of 20 grid points gives adequate
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results. Greater wave angles give rise to large reflections. The most effective way to reduce such
reflections is to increase the buffer zone length. However, as has been shown, for out-going waves
nearly parallel to the outflow boundary, very large buffer zones are required which become
computationally expensive. The effect of the out-going wavelength is to change the required
buffer length. For fixed wave angles, larger wavelengths require buffer zones of increased length.
The influence of wave angle and wavelength on buffer zone performance means that a general
method for defining minimum length buffer zones for adequate performance is difficult as buffer
zone performance is problem specific.

5. Conclusions

The performance of five non-reflecting boundary conditions for the linearized Euler equations
has been investigated using a two-dimensional wavesplitting technique. Wavesplitting allows the
decomposition of the linearized Euler equations into upstream and downstream acoustic
eigenmodes modes, allowing reflected waves from domain boundaries to be accurately measured.
The technique was applied to the performance of three different implementations of the buffer
zone boundary condition. The results showed that a buffer zone boundary condition which uses
explicit damping performs best. For all boundary conditions, a deterioration in performance was
observed for higher out-going wave angles. Extension of the buffer zone length significantly
reduced wave reflections. However, for the explicit damping buffer zone, buffer lengths of the
order of one wavelength of the incident wave in the direction of damping were required to
produce satisfactory results. This requirement could greatly increase computational cost. For each
different incident waveform tested, there was an optimum value for the amount of damping to be
applied. For higher mean flow speeds, a greater amount of damping was required to obtain the
optimum performance.
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